applies the modeltime_refit()
function from 'modeltime' package to the object generated from
the modeltime_wfs_fit()
function (or the filtered version after the modeltime_wfs_bestmodel()
is applied).
modeltime_wfs_refit(.wfs_results, .serie)
.wfs_results | tibble of combination of recipes and models fitted, generated with the |
---|---|
.serie | a time series dataframe. |
a tibble containing the re-trained models.
each workflow is now re-trained using all the available data.
library(modeltime) library(dplyr) library(earth) data <- sknifedatar::data_avellaneda %>% mutate(date=as.Date(date)) %>% filter(date<'2012-06-01') recipe_date <- recipes::recipe(value ~ ., data = data) %>% recipes::step_date(date, features = c('dow','doy','week','month','year')) mars <- parsnip::mars(mode = 'regression') %>% parsnip::set_engine('earth') wfsets <- workflowsets::workflow_set( preproc = list( R_date = recipe_date), models = list(M_mars = mars), cross = TRUE) wffits <- sknifedatar::modeltime_wfs_fit(.wfsets = wfsets, .split_prop = 0.8, .serie = data)#>#>#>#>#> ── 1 models fitted ♥ ───────────────────────────────────────────────────────────#>#> 0 models deleted x ──#>sknifedatar::modeltime_wfs_refit(.wfs_results = wffits, .serie = data)#> # Modeltime Table #> # A tibble: 1 x 3 #> .model_id .model .model_desc #> <chr> <list> <chr> #> 1 R_date_M_mars <workflow> EARTH