allows forecasting on multiple time series from multiple fitted models.

modeltime_multiforecast(models_table, .h = NULL, .prop = NULL)

Arguments

models_table

'table_time' tibble generated with the modeltime_multifit() function.

.h

prediction horizon of the modeltime_forecast() function.

.prop

time series split partition ratio. If "h" is specified, this function predicts on the testing partition.

Value

'models_table' tibble with a new column called 'nested_forecast' where the predictions are stored.

Details

this function takes the 'table_time' object generated with the modeltime_multifit() function, the modeltime_forecast() from the package 'modeltime' is applied to each model for each series.

Examples

# Data data_serie <- sknifedatar::table_time # Forecast sknifedatar::modeltime_multiforecast(data_serie$table_time, .prop=0.8)
#> # A tibble: 2 x 7 #> sector nested_column m_ets m_nnetar nested_model calibration nested_forecast #> <chr> <list> <lis> <list> <list> <list> <list> #> 1 Comerc… <tibble [49 ×<fit<fit[+]> <model_time<model_tim<tibble [69 × … #> 2 Ensena… <tibble [49 ×<fit<fit[+]> <model_time<model_tim<tibble [69 ×